General Certificate of Education
January 2008
Advanced Level Examination

MATHEMATICS

MFP2
Unit Further Pure 2

Thursday 31 January 20089.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Express $4+4 \mathrm{i}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(b) Solve the equation

$$
z^{5}=4+4 i
$$

giving your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.

2 (a) Show that

$$
(2 r+1)^{3}-(2 r-1)^{3}=24 r^{2}+2
$$

(b) Hence, using the method of differences, show that

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

3 A circle C and a half-line L have equations

$$
|z-2 \sqrt{3}-i|=4
$$

and

$$
\arg (z+\mathrm{i})=\frac{\pi}{6}
$$

respectively.
(a) Show that:
(i) the circle C passes through the point where $z=-\mathrm{i}$;
(ii) the half-line L passes through the centre of C.
(b) On one Argand diagram, sketch C and L.
(c) Shade on your sketch the set of points satisfying both

$$
|z-2 \sqrt{3}-i| \leqslant 4
$$

and

$$
0 \leqslant \arg (z+i) \leqslant \frac{\pi}{6}
$$

4 The cubic equation

$$
z^{3}+\mathrm{i} z^{2}+3 z-(1+\mathrm{i})=0
$$

has roots α, β and γ.
(a) Write down the value of:
(i) $\alpha+\beta+\gamma$;
(ii) $\alpha \beta+\beta \gamma+\gamma \alpha$; (1 mark)
(iii) $\alpha \beta \gamma$.
(b) Find the value of:
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}$; (3 marks)
(ii) $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$; (4 marks)
(iii) $\alpha^{2} \beta^{2} \gamma^{2}$. (2 marks)
(c) Hence write down a cubic equation whose roots are α^{2}, β^{2} and γ^{2}.

5 Prove by induction that for all integers $n \geqslant 1$

$$
\sum_{r=1}^{n}\left(r^{2}+1\right)(r!)=n(n+1)!
$$

Turn over for the next question

6 (a) (i) By applying De Moivre's theorem to $(\cos \theta+\mathrm{i} \sin \theta)^{3}$, show that

$$
\begin{equation*}
\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \tag{3marks}
\end{equation*}
$$

(ii) Find a similar expression for $\sin 3 \theta$.
(iii) Deduce that

$$
\begin{equation*}
\tan 3 \theta=\frac{\tan ^{3} \theta-3 \tan \theta}{3 \tan ^{2} \theta-1} \tag{3marks}
\end{equation*}
$$

(b) (i) Hence show that $\tan \frac{\pi}{12}$ is a root of the cubic equation

$$
\begin{equation*}
x^{3}-3 x^{2}-3 x+1=0 \tag{3marks}
\end{equation*}
$$

(ii) Find two other values of θ, where $0<\theta<\pi$, for which $\tan \theta$ is a root of this cubic equation.
(c) Hence show that

$$
\begin{equation*}
\tan \frac{\pi}{12}+\tan \frac{5 \pi}{12}=4 \tag{2marks}
\end{equation*}
$$

7 (a) Given that $y=\ln \tanh \frac{x}{2}$, where $x>0$, show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosech} x \tag{6marks}
\end{equation*}
$$

(b) A curve has equation $y=\ln \tanh \frac{x}{2}$, where $x>0$. The length of the arc of the curve between the points where $x=1$ and $x=2$ is denoted by s.
(i) Show that

$$
s=\int_{1}^{2} \operatorname{coth} x \mathrm{~d} x
$$

(ii) Hence show that $s=\ln (2 \cosh 1)$.

END OF QUESTIONS

